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Problem 1

Consider the 2-dimensional spacetime1

ds2 = r2dt2 − dr2

r2

defined for r > 0.

1. Write the components of the metric and compute the Christoffel symbols.

2. Consider the Riemann tensor with all components lower. How many independent components does
it have in 2 dimensions? Compute the independent components of the Riemann tensor (with lower
indices) for this metric.

3. Derive the equations of motion for massive particles moving in this spacetime.

4. Show that massive particles moving along geodesics can never reach the region r → ∞.

5. Consider a massive particle of mass m staying at constant value of r = r0. Compute the magnitude of
relativistic acceleration that the particle undergoes and the force needed to keep it in this orbit.

Problem 2

Consider a massive test particle moving in the Schwarzschild metric

ds2 =

(

1− 2GM

r

)

dt2 −
(

1− 2GM

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

1. Derive the equations describing inertial motion of the particle

2. Find the radius of the smallest possible circular orbit. Argue that this orbit is unstable under small
perturbations.

3. Find the radius of the smallest possible stable circular orbit.

Problem 3

Consider a Robertson-Walker metric with flat spatial section (k = 0):

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

1This is called 2-dimensional anti-de Sitter spacetime.
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1. Suppose that the universe is filled with perfect fluid whose equation of state is P = wρ, where w is
some constant. Using the FRW equations

3
ä

a
= −4πG(ρ+ 3P )

ȧ2

a2
=

8πG

3
ρ

Show that the scale factor a obeys the condition

ρa3(1+w) = C

where C is some constant.

2. Using this show that (if w > −1) the scale factor will evolve with time like

a(t) = D(t− t0)
2

3(1+w)

where t0 is an integration constant and D is another constant. At t = t0 the scale factor goes to zero,
so it is natural to identify t = t0 with the Big Bang singularity.

3. Notice that the case w = −1 is special and the previous formula does not apply. Verify that the FRW
equations with a fluid which has equation of state with w = −1 are identical to the equations that we
would get without any fluid, but with non-vanishing cosmological constant Λ

Rµν − 1

2
gµνR− Λgµν = 0

Find the relation between the density ρ of the fluid with w = −1 and the effective cosmological constat
parameter Λ.

4. In the case where we have fluid with w = −1 find the time-dependence of the scale factor a(t).

2



Solution problem 1:

1. We have
gtt = r2 grr = −1/r2 gtr = grt = 0

Γt
tt = 0

Γt
tr = Γt

rt =
1

r

Γr
tt = r3

Γr
rt = Γr

tr = 0

Γt
rr = 0

Γr
rr = −1

r

2.
Rtrtr = ±1

3. Consider parametrizing the curve as t(τ), r(τ). Minimizing the length in affine parametrization we
find

r2 ṫ = k

and the affine parametrization condition

r2 ṫ2 − ṙ2

r2
= 1

or
k2

r2
− ṙ2

r2
= 1

or
ṙ2 + r2 = k2

We notice that the effective potential goes like r2 and is hence unbounded towards r → ∞.

5. The orbit of the particle is xµ = (t(τ), r0). We compute the 4-velocity as

uµ = (
1√
r0

, 0)

The 4-acceleration is

aν = uµ∇µu
ν = uµΓν

kµu
k =

1

r0
Γν
tt

so
at = 0 ar = r20

We compute the magnitude
gµνa

µaν = −r20

Solution problem 2: In the usual way we find the equations of motion

ṫ

(

1− 2GM

r

)

= k
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r2φ̇ = h
(

1− 2GM

r

)

ṫ2 −
(

1− 2GM

r

)−1

ṙ2 − r2φ̇2 = 1

Replacing the first two we find
k2

1− 2GM
r

− ṙ2

1− 2GM
r

− h2

r2
= 1

or

k2 − ṙ2 − h2

r2

(

1− 2GM

r

)

= 1− 2GM

r

Differentiating and eliminating ṙ we find

−2r̈ + 2
h2

r3
− 6GMh2

r4
=

2GM

r2

For r̈ = 0 we find the condition
h2r − 3GMh2 −GMr2 = 0

or

r2 − h2

GM
r + 3h2 = 0

Solving this quadratic equation we find

r± =
h2

2GM
±
√

h4

4G2M2
− 3

Solution problem 3:

1. We have the two FRW equations:

3
ä

a
= −4πG(ρ+ 3P ) (1)

ȧ2

a2
=

8πG

3
ρ (2)

Let us consider the time derivative of the combination ρa3(1+w). We have

d

dt
(ρa3(1+w)) = ρ̇a3(1+w) + 3(1 + w)ρ

ȧ

a
a3(1+w) (3)

In order to compute ρ̇ we differentiate (2) to find

ρ̇ =
3

8πG

(

2ȧä

a2
− 2

ȧ3

a3

)

We replace the first term in the parenthesis from (1) and the second from (2) to find

ρ̇ = −ρ
ȧ

a
3(1 + w)

Replacing this in (3) we get the desired relation

ρa3(1+w) = C = constant
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2. Let us assume that w 6= −1. Plugging the previous result in (2) we find

ȧ2

a2
=

8πG

3

C

a3(1+w)

or

a3w+1ȧ2 =
8πGC

3

or (assuming that we are in an expansion phase, so that ȧ > 0)

a
3w+1

2 da =
8πGC

3
dt

or
2

3(w + 1)
a

3(w+1)
2 =

8πGC

3
t+ constant

We can rewrite the integration constant in the following form

a(t) = D(t− t0)
2

3(1+w) , D = [4πGC(1 + w)]
2

3(1+w)

3. The FRW equations in the presence of the fluid with w = −1 and absence of cosmological constant
were derived from

Rµν − 1

2
gµνR = 8πGTµν

where Tµν was the perfect fluid stress tensor Tµν = (ρ+ P )uµuν − Pgµν . For w = −1 we find P = −ρ
and hence

Tµν = ρgµν

Hence the FRW equations were derived from

Rµν − 1

2
gµνR = 8πGρgµν (4)

with ρ being a constant.

On the other hand, in the absence of any fluid, but in the presence of the cosmological constant, we
have the equations Rµν − 1

2gµνR − Λgµν = 0. Moving the last term to the RHS we get the equations
in the form

Rµν − 1

2
gµνR = Λgµν

These are identical to equations (4) if we idenify

Λ = 8πGρ

4. If w = −1 we find from the first item that

ρ = constant

Hence from (2) we find that (assuming ȧ > 0)

ȧ

a
=

√

8πGρ

3

or

a(t) = a0e
√

8πGρ
3 t

where a0 is some constant.
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